

CPSC 471: Final Report

Group 17: Gil Abinal, Maria Mamaclay, Sadat Islam
December 11th, 2017

Project Proposal 3
Introduction 3
Problem Definition 3
Proposed Solution 3
Motivation 4
Conclusion/Timeline 4
References 4

Entity-Relationship Design 5
Diagram 5
Assumptions 5
Changes from Implementation 6

Relational (Logical) Database Design 7
Diagram 7
Changes from Implementation 8

General Application Hierarchal Structure 9
HIPO Diagram 9
HIPO Functions 10
DFD Diagram 15

User Manual 17
General User 17

Main Layout 17
How to Order 17
Navigating the Menu 18
Specials 20
About 21
Contact 21

Administration Access 22
How to Login as Admin 22
Homepage for Admins 23
How to Manipulate the Menu 23
How to Create Promotions 24
How to Manage Orders 25

Appendix A: Initial Database State 27

 2

Project Proposal

Introduction

A local Calgary family restaurant, ​Bangla Bazaar Food Court​, currently does not have a website.
While the restaurant has a Facebook page, the lack of an official website means potential
customers do not have the option to view specific menu items offered, the price of each menu
item, or additional information about the restaurant online. To solve this issue, our group will
develop a web application so that the manager can advertise his restaurant on the web. Our
motivation is to help his small business gain as much traction as possible.

This report will elaborate on our problem, our proposed solution, as well as our motivation for
conducting this project. We will end the report with an estimated timeline of deliverables.

Problem Definition

A website is usually the first place a customer goes to browse a company's products. Browsing
the web is simple and efficient. Without a website, a restaurant risks losing potential customers
who are interested in their cuisine, but have questions that they need answered. For instance,
what is the average cost to dine? What does the restaurant offer in its menu? Is it family
friendly? What hours are they open? If a customer has to arrive at the venue to get the
information, they may choose it’s not worth the effort.

In our case, a local Calgary restaurant ​Bangla Bazaar Food Court​ has no website to promote
their business. As of now, the restaurant does have a Facebook page as an alternative solution,
but it does not feature their menu or their prices. Having their own website would be an
improvement, as the manager can organize essential information and advertise their restaurant.

Proposed Solution

Our goal is to develop a website addressing all the questions listed in the problem definition,
and then some. Our website will have a general description of the cuisine offered at ​Bangla
Bazaar Food Court​, as well as contact information, location, and so forth. We will also have an
interactive menu where customers can browse dishes, view the prices, and read reviews.

With an admin login, we will allow the manager to update the homepage with new specials,
update the menu items, and update employee information. We may choose to relocate the
managerial tasks to an Android application to save activity on the web domain.

 3

Motivation

Running a small business takes a lot out of a manager's day. We want to alleviate some of the
stress by advertising on his behalf. In this day and age, having your business online is a
necessity to produce revenue and to attract potential customers - especially if your business is
small and local. Although our project is simple, it is important and essential since it not only lets
us apply what we have learned into real-life situations but it also lets us deploy an application to
an actual client. We wanted to have an impact in the real world, and this is a real world project.

Conclusion/Timeline

Overall, our group strives to develop a website for the ​Bangla Bazaar Food Court​ so the
restaurant can promote their business and gain more customers. Our first step to achieve our
goal is to create a ER diagram of our database. We will implement it on ASP.Net using Visual
Studio 2017 and populate it with some test data. Following the schedule posted in the project
information sheet on D2L, we will then work on the front-end and implement the required
webpages and empty tables. Finally, we will write functions to interact with our database. Our
group will continue to meet with the manager throughout this project and ask for their input on
our progress - if our designs meets their requirements, if they would like to add any features,
and so forth. The bulk of our time should be spent on the web application. If time permits, we
will create a managerial phone application.

From the time given, our implementation resulted in a prototype of a ​website​ for the ​Bangla
Bazaar Food Court​. We have implemented the majority of the backend and database
functionalities for the website, such as adding, editing, and deleting food items from the menu,
special promotions, and orders. We also achieved in developing a front-end layout of the
website and started on a few of its functionalities, which includes dynamically adding menu
items on a customer’s cart. Our group is motivated to refactor and refine the front-end
functionalities in future iterations. Our website’s functionalities and database system will be
further explained in the sections below and in our User Manual.

References

● Facebook page of ​Bangla Bazaar Food Court
● Our group’s database implementation of ​Bangla Bazaar Food Court
● Our GitHub repository and source code for ​Bangla Bazaar Food Court

 4

http://banglabazaarfoodcourt.azurewebsites.net/
https://www.facebook.com/banglabazarfoodcourt/
https://www.facebook.com/banglabazarfoodcourt/
http://banglabazaarfoodcourt.azurewebsites.net/
http://banglabazaarfoodcourt.azurewebsites.net/
https://github.com/Sadat21/BanglaBazarFoodCourt
https://github.com/Sadat21/BanglaBazarFoodCourt

Entity-Relationship Design

Diagram

Assumptions

- We do not need a MENU entity in our database. This is because we are assuming that
the menu will be displayed in the front-end, with the user interface and interaction. For
the back-end and the actual database system, the ORDERS and FOOD_ITEM entities
will suffice for the food information.

- The Type attribute in the FOOD_ITEM entity refers to if a FOOD_ITEM is an appetizer,
entrée, dessert, drink, etc. The Description attribute is a text-based description of the
FOOD_ITEM.

- CUSTOMERS can order multiple times, but each ORDER will be assigned its own
OrderNo and will be treated as a different transaction. CUSTOMERS will be assigned an
ID, which will appear as an incrementing AutoNumber data type in the database. This is

 5

due to the assumption that the restaurant does not require customers to be a member to
order online.

- It is possible that EMPLOYEEs may place an ORDER for a CUSTOMER. This may
occur if a customer orders through the phone. To do this, we created a “Phone_Order”
relationship between the EMPLOYEE, CUSTOMER, and ORDER. We chose to use a
different relationship compared to our regular ORDER in order to reduce null values,
since we expect most of the orders to be in person or online.

- A SUPERVISOR has access to modify the website or the database, so we need to store
their Username and Password, where the Password will be properly encrypted through
hashing to enforce security.

Changes from Implementation
During our implementation of the website application, we have encountered some changes to
the Entity-Relationship Design. We decided to omit the Phone_Order relation, as we found its
attributes redundant to the orders relationship in our implementation. In the case a customer
may order through the phone, we decided that the employee will fill out their information for
them through the database, and then edit it's PickUpTime when it is picked up. Moreover, we
also decided to remove the PickedUp attribute from the Orders relationship, as it was also
redundant to our implementation. We saw that the PickedUp attribute can be inferred from the
PickUpTime attribute, since this attribute will be set to NULL until it is edited with a Date value -
thus indicated that an order was picked up.

Our group also did not include the SUPERVISOR entity in our database implementation.
Instead, we used ASP.Net’s provided interface and methods to generate logins for the
supervisor to create, edit, and delete items from a selected database. This way, we can ensure
that the security of the supervisor’s username and password is safely encrypted -- rather than
us encrypting the information ourselves.

A few attributes were also added or modified in our implementation. For instance, we included a
“Name” attribute so administrators can easily distinguish which Promotion they may be editing
or deleting, thus increasing the user-friendliness of our website.

These changes should also be noted for our Relational(Logical) Database Design below.

 6

Relational (Logical) Database Design

Diagram

Note: ​The primary keys are the first element in every table. They are underlined, and it
distinguishable through the heavier line weight underneath each primary key.

 7

Changes from Implementation
As mentioned in the previous section, our group implemented changes to our
Entity-Relationship and consequently our Relational (Logical) Database Design. Our changes in
our relational model is similar to the changes in our Entity-Relationship design: the
PHONE_ORDER and SUPERVISOR relations and the PickedUp attribute of the ORDERS
entity were omitted, and we included a Name attribute to our PROMO relation.

To justify our modifications to our initial database design, we believed that these modifications
will reduce the redundancy and the increase the user-friendliness and security of our database
implementation. The PHONE_ORDER relation may take up unnecessary overhead since most
of its attributes are the same as the ORDERS relation, and including a Name attributes for the
Promotions will make each promotion distinguishable to the administration - rather than having
to memorize a promotion’s ID number or its start and end dates.

 8

General Application Hierarchical Structure

HIPO Diagram

 9

HIPO Functions

Function: ​Create Food Item
Inputs: ​@Food_Item x
Outputs: ​Boolean
Pseudocode:
Connect to database
Query = INSERT INTO Food_Items(Availability, Type, Description, Price, Picture, Name)
VALUES (x.availability, x.type, x.description, x.price, x.picture, x.name);
Parse Query
Execute Query
Close Connection to Database
Return true if it worked, else false

Function: ​Select Food Item
Inputs: ​@int id
Outputs: ​Food_Item
Pseudocode:
Connect to database
Query = SELECT * FROM Food_Items WHERE id = FoodID;
Parse Query
Execute Query
Close Connection to Database
Return the Food_Item object

Function: ​Delete Food Item
Inputs: ​@int id
Outputs: ​Boolean
Pseudocode:
Connect to database
Query = DELETE FROM Food_Items WHERE ‘id’ = ‘Food_Id’;
Parse Query
Execute Query
Close Connection to Database
Return true if it worked, else false

Function: ​Edit Food Item
Inputs: ​@Food_Item x
Outputs: ​Boolean
Pseudocode:
Connect to database

 10

Query = UPDATE Food_Item SET Availability = x.availability, Type = x.type, Description =
x.description, Price = x.price, Picture = x.picture, Name = x.name WHERE x.id = F.id;
Parse Query
Execute Query
Close Connection to Database
Return true if it worked, else return false

Function: ​Assign Food Item
Inputs: ​@Food_Item x @Promo y
Outputs: ​Boolean
Pseudocode:
Connect to database
Query = INSERT INTO Discounts (PromoID, FoodID) VALUES (y.promoID, x.foodID);
Parse Query
Execute Query
Close Connection to Database
Return true if it worked, else false

Function: ​Create Promo
Inputs: ​@PromoID, @StartDate, @EndDate, @Discount
Outputs: ​Boolean
Pseudocode:
Connect to database
Query = INSERT INTO Promo

 VALUES (@PromoID, @StartDate, @EndDate, @Discount);
Parse Query
Execute Query
Close Connection to Database
Return true if it worked, else return false

Function: ​Delete Promo
Inputs: ​@PromoID
Outputs: ​Boolean
Pseudocode:
Connect to database
Query = DELETE FROM Promo

 WHERE (PromoID = @PromoID);
Parse Query
Execute Query
Close Connection to Database
Return true if deletion worked; else, return false

 11

Function: ​Edit Promo
Inputs: ​@PromoID
Outputs: ​Boolean
Pseudocode:
Connect to database
Query = UPDATE Promo

 SET “attribute”
 WHERE (PromoID = @PromoID);

Parse Query
Execute Query
Close Connection to Database
Return true if update worked; else, return false

Function: ​Add Order
Inputs: ​@OrderNo, @ID, @TotalPrice, @OrderTime, @PickupTime, @PickedUp, @Date,
@SIN, @FoodID, @Quantity
Outputs: ​Boolean
Pseudocode:
Connect to database
Query = INSERT INTO Orders

 VALUES (@OrderNo, @ID, @TotalPrice, @OrderTime, @PickupTime, @PickedUp,
@Date);

If (Order came through Phone) then do {
 INSERT INTO Phone_Order
 SELECT c.ID, o.OrderNo, s.SIN, o.OrderTime, o.PickupTime, o.PickedUp
 FROM Customer as C, Order as o, Supervisor as s
 WHERE (c.ID = @ID) AND (o.OrderNo = @OrderNo) AND (s.SIN = @SIN); }

// inserting what food items were ordered by customer
 INSERT INTO Contains(OrderNo, FoodID)
 SELECT o.OrderNo, f.FoodID
 FROM Order as o, Food_Item as f
 WHERE o.OrderNo = @OrderNo AND f.FoodID = @FoodID;

// adding quantity to the food items order
 UPDATE Contains
 SET Quantity = @Quantity
 WHERE OrderNo = @OrderNo AND FoodID = @FoodID;

Parse Query
Execute Query
Close Connection to Database
Return true if addition is successful; else, return false

 12

Function: ​View Order
Inputs: ​@OrderNo
Outputs: ​Boolean
Pseudocode:
Connect to database
Query = if (the order was a Phone_Order), then do {

 SELECT *
 FROM Phone_Order as p
 WHERE p.OrderNo = @OrderNo AND

(SELECT *
 FROM Contains as c
 WHERE c.OrderNo = p.OrderNo;)}

else do {
 SELECT *
 FROM Orders as o
 WHERE o.OrderNo = @OrderNo AND

(SELECT *
 FROM Contains as c
 WHERE c.Orderno = o.OrderNo;)}

Parse Query
Execute Query
Close Connection to Database
Return true if it worked, else return false

Function: ​Delete Order
Inputs: ​@int orderNo
Outputs: ​Boolean
Pseudocode:
Connect to database
Query = // first deleting any records that contain OrderNo as a foreign key

 DELETE FROM Contains as c WHERE c.OrderNo = orderNo;
 If (the order was a Phone_Order), then do {

DELETE FROM Phone_Order as p WHERE p.OrderNo = orderNo;
 }
// deleting record
 DELETE FROM Orders as o WHERE o.OrderNo = orderNo;

Parse Query
Execute Query
Close Connection to Database
Return true if it worked, else return false

Function: ​Add Employee
Inputs: ​@Employee x

 13

Outputs: ​Boolean
Pseudocode:
Connect to database
Query = INSERT INTO Employee (SIN, Name, Wage) VALUES (x.sin, x.name, x.wage);
Parse Query
Execute Query
Close Connection to Database
Return true if it worked, else false

Function: ​Select Employee
Inputs: ​@int sin
Outputs: ​Employee
Pseudocode:
Connect to database
Query = SELECT * FROM Employee WHERE SIN = sin;
Parse Query
Execute Query
Close Connection to Database
Return Employee if found, else return null

Function: ​Edit Employee
Inputs: ​@Employee x
Outputs: ​Boolean
Pseudocode:
Connect to database
Query = UPDATE Employee SET Name = x.name, Wage = x.wage WHERE SIN = x.sin;
Parse Query
Execute Query
Close Connection to Database
Return true if it worked, else return false

Function: ​Delete Employee
Inputs: ​@int sin
Outputs: ​Boolean
Pseudocode:
Connect to database
Query = DELETE FROM Employee WHERE SIN = sin;
Parse Query
Execute Query
Close Connection to Database
Return true if it worked, else return false

 14

DFD Diagram

 15

Note:​ We included the GENERATE REPORTS process in the DFD model but not in the HIPO
model because we are planning to include it into our bonus implementation (the Android
implementation) if time allows it. For our main implementation, we are focusing on creating a
website for the customers to order food items from the database and for employees to add food
items, employees, and promotions to the database. Our planned bonus implementation focuses
on the back-end, staff, and employees. Here, the staff administrators will be able to add and edit
employees as well as see monthly reports on their inventory and finances. Thus, our HIPO
diagram is solely on the website implementation, whereas our DFD diagram shows our overall
flow of data in our project, which includes generating monthly reports for the staff and
employees to view in the Android application.

 16

User Manual

General User

Main Layout

Figure 1: Navigation Bar

Our main layout will primarily consist of a navigation bar that is fixed on top of the page. The
navigation bar contains links for customers to navigate around the page. Below is a list of the
pages and what the customer can do among these pages:

● Logo ​Homepage consisting of facebook news feed and google reviews
● Order Now! Order selected food items online through the website
● Menus View the online menu, and can order a selected item while on the menu
● Specials View special promotions, events, combos, and discounted prices.
● About View additional information about the website, their mission, and so forth.
● Contact View the contact information of the Bangla Bazar Food Court.

How to Order

Figure 2: Order Now! page

 17

In our ​Order Now!​ page, we implemented an order menu using two elements: a collapsible list
that is grouped by the food type and a table that dynamically shows a person’s selected order.
The collapsible list is grouped by food type, and underneath each food type contains the food
items of that food type. From there, the customer will be able to select how much of each food
type they would want to order. This list will also contain any combos or specials available to
order.

A table is also shown on this page, which dynamically shows the customer’s currently selected
items that they want to order and the total price of their order. Customers may select an item on
this table to edit or delete the item from their order. There is a submit button next to this table,
which allows the restaurant to save the customer’s order into the database. After submitting an
order, we ask the customer for their name and contact number.

Navigating the Menu

Figure 3: Menu page

To view the menu, customers can navigate to the ​Menus​ tab on the navigation bar. From there,
they will see a gridview of images of the available food items in Bangla Bazaar’s menu. A

 18

customer can click on a given image, and a modal will appear on the screen, giving the name of
the food item, its description, its price, and the option to order the said item.

Figure 4: Greater Description of a Menu Item

We also have have hyperlinks at the top of our menu to fast track to a certain portion of our
menu.

Figure 5: Hyperlinks to Sections of our Menu

 19

Specials
In the ​Specials​ page, we have a carousel view that shows images of the current combos,
discounts, and events currently taking place. We will included a list of these specials underneath
the carousel. Customers add one of these orders to their cart.

Figure 6: Specials Page

 20

About
The ​About​ page will be fairly simple, as it will include a description of the Bangla Bazar Food
Court, its mission, and who the founders of the restaurant are. This section is currently blank as
we are still in the process of getting this information.

Contact
The ​Contact​ page displays Bangla Bazar Food Court’s contact information. Here, customers
can see the restaurant’s phone number, email address, as well as the location of the restaurant.
They can also choose to leave a message for the manager.

Figure 7: Contact Page

 21

Administration Access

Figure 8: Navigation Bar

As seen in the image above, the navigation bar also allows for employee administrators to
interact with the website, and they will have to click the ​Admin Login​ tab to login and access
the administrative pages, where you can manipulate the menu, create promotions, and manage
orders.

How to Login as Admin
To log in as an administrator, the admin will have to click the ​Admin Login​ tab and fill in their
username and password, which will be stored in our database. Once they fill in their log-in
information, we will check if the values match and grant them access if they do. Once logged in,
they will be able to:

● Manipulate the Menu​ add or remove food items to the menu
● Create Promotions add new promotions listed in the database into the website
● Manage Orders​ view, edit, delete orders that have been placed through the online

website

Figure 9: Login Page

 22

Homepage for Admins

Figure 10: Admin Homepage

Clicking ​Admin Tables​ will lead the manger to the admin homepage. Here they can view all the
database entries.

How to Manipulate the Menu
From the homepage, the manager will want to click on the ​FoodItems​ button. This will lead
them to the following webpage below.

Figure 11: Food Item Homepage

 23

Here the manager will have a view of all the current menu items in the system. Each item gives
the choice to edit or delete said item on the far right hand side. Underneath the heading, there is
an hyperlink that allows you to create new menu items.

Figure 12: Create New Food Item

Here you fill out the information for the new menu item and upload a picture. The picture is
mandatory as it is required to be displayed in the menu. Once you fill out the form, hit submit.
You will now see your newly added menu item.

How to Create Promotions

From the ​Admin Homepage​, click the Promotions button. You should see the following webpage
below.

Figure 13: Promotions Homepage

Here you can view all the current Specials that are listed on the website. Here you can create,
edit, and delete a promotion. A few new features on this page include the ability to add food

 24

items to each promotion. If you click the ​Add Food​ button, you should arrive at the webpage
below.

Figure 14: Create Discount Page

The ​PromoID ​drop down menu will consist of the promotion that you wish to add more food
items too. The ​FoodID​ drop down menu will list all the food items currently in the menu. After
making your selections, hit submit. You will be taken back to the ​Promotions Homepage​. Now if
you click the name of the promotion, you will be taken to the following page below.

Figure 15: Discount Page for Selected Promotion

Here you will be able to see the newly added food item to the promotion. You can delete any of
these food items from this menu as well.

How to Manage Orders
From the ​Admin Homepage​, click the button that says ​Orders​. You’ll arrive at the page shown
below.

 25

Figure 16: Orders Homepage

You are able to create, edit, and delete any order. You can also view what food elements an
order contains by clicking on the ​orderNo​. You can also manually add food items to each order
the same way we did for promotions.

 26

Appendix A: Initial Database State

CUSTOMER

ID Name ContactNo

NULL NULL NULL

ORDERS

ID OrderNo TotalPrice OrderTime PickupTime Date

1 1 99.00 12:20 13:00 5/5/2005 12:00:00AM

PROMO

Name StartDate EndDate Discount

Mutton Biriyani

Combo

12/11/2017

12:00:00AM

12/31/2017

12:00:00AM

9.99

Beef Burger Combo 12/11/2017

12:00:00AM

12/31/2017

12:00:00AM

6.99

FOOD_ITEM

FoodID Name Availability Type Description Price Picture

1 Beef

Burger

69 Entree DROP TABLE 69.69 …

2 Shawarma 89 Entree Large and

filling

8.99 …

 3 Samosa 112 Appetizers Fun snack 0.99 ...

4 Chocolate

Cheese

Cake

56 Dessert Creamy 4.99 ...

 27

EMPLOYEE

SIN Name Wage

NULL NULL NULL

DISCOUNTS

PromoID FoodID

2 1

 1 4

CONTAINS

OrderNo FoodID Quantity

1 1 2

1 2 2

 28

